A hardiness zone is a geographically defined area in which a specific category of plant life is capable of growing, as defined by climatic conditions, including its ability to withstand the minimum temperatures of the zone (see the scale on the right or the table below). For example, a plant that is described as "hardy to zone 10" means that the plant can withstand a minimum temperature of -1°C (30.2°F) to 3.9°C (39.0°F). First developed by the United States Department of Agriculture (USDA) as a rough guide to landscaping and gardening, the use of the zones has been adopted by other countries.
Video Hardiness zone
United States hardiness zones
In the United States, most of the warmer zones (zones 8, 9, 10, and 11) are located in the southern half of the country and on the Pacific coast. The low latitude and often stable weather in Florida, the Gulf Coast, and southern Arizona and California, are responsible for the few episodes of severe cold relative to normal in those areas. The more northerly and central portions of the USA have the cooler zones (zones 7, 6, 5, and 4). The central and northerly portions of the mainland often have much less consistent range of temperatures in winter due to being more continental, and thus the zone map has its limitations in these areas.
Definitions
Updates
The USDA first issued its standardized hardiness zone map in 1960, and issued revisions in 1965, 1990, and 2012.
In 2003, the American Horticultural Society (AHS) produced a draft revised map, using temperature data collected from July 1986 to March 2002. The 2003 map placed many areas approximately a half-zone higher (warmer) than the USDA's 1990 map. Reviewers noted the map zones appeared to be closer to the original USDA 1960 map in its overall zone delineations. Their map purported to show finer detail, for example, reflecting urban heat islands by showing the downtown areas of several cities (e.g., Baltimore, Maryland; Washington, D.C. and Atlantic City, New Jersey) as a full zone warmer than outlying areas. The map excluded the detailed a/b half-zones introduced in the USDA's 1990 map, an omission widely criticized by horticulturists and gardeners due to the coarseness of the resulting map. The USDA rejected the AHS 2003 draft map and created its own map in an interactive computer format, that the American Horticultural Society now uses.
In 2006, the Arbor Day Foundation released an update of U.S. hardiness zones, using mostly the same data as the AHS. It revised hardiness zones, reflecting generally warmer recent temperatures in many parts of the country, and appeared similar to the AHS 2003 draft. The Foundation also did away with the more detailed a/b half-zone delineations.
In 2012 the USDA updated their plant hardiness map based on 1976-2005 weather data, using a longer period of data to smooth out year-to-year weather fluctuations. Two new zones were added to better define and improve information sharing on tropical and semitropical plants, they also appear on the maps of Hawaii and Puerto Rico. The map has a higher resolution than previous ones, and is able to show local variations due to things such as elevation or large bodies of water. Many zone boundaries were changed as a result of the more recent data, as well as new mapping methods and additional information gathered. Many areas are a half zone warmer, but since the zones are determined by a region's extreme weather events instead of overall temperature averages and it only reflects the past 30 years, it is not reliable evidence of whether there has been global warming. The 2012 map was created digitally for the internet, and includes a ZIP Code zone finder and an interactive map.
U.S. cities
The USDA plant hardiness zones for U.S. cities as based on the 2012 map are the following:
Criticism
The hardiness zones are informative: the extremes of winter cold are a major determinant of whether a plant species can be cultivated outdoors at a particular location; however, the USDA hardiness zones have a number of drawbacks if used without supplementary information. The zones do not incorporate summer heat levels into the zone determination; thus sites which may have the same mean winter minima, but markedly different summer temperatures, will be accorded the same hardiness zone. Thus a zone 8 cool-summer climate like Seattle or London does not have nearly as many growing degree days as a zone 8 or 9 hot-summer climate like Charleston, South Carolina, or Madrid, Spain.
In the colder zones (zones 6 - 3), another issue is that the hardiness zones do not take into account the reliability of the snow cover. Snow acts as an insulator against extreme cold, protecting the root system of hibernating plants. If the snow cover is reliable, the actual temperature to which the roots are exposed will not be as low as the hardiness zone number would indicate. As an example, Quebec City in Canada is located in zone 4, but can rely on a significant snow cover every year, making it possible to cultivate plants normally rated for zones 5 or 6. But, in Montreal, located to the southwest in zone 5, it is sometimes difficult to cultivate plants adapted to the zone because of the unreliable snow cover.
Other factors that affect plant survival, though not considered in hardiness zones, are soil moisture, humidity, the number of days of frost, and the risk of a rare catastrophic cold snap. Some risk evaluation - the probability of getting a particularly severe low temperature - often would be more useful than just the average conditions.
Lastly, many plants may survive in a locality but will not flower if the day length is insufficient or if they require vernalization (a particular duration of low temperature). With annuals, the time of planting can often be adjusted to allow growth beyond their normal geographical range.
Alternatives
An alternative means of describing plant hardiness is to use "indicator plants". In this method, common plants with known limits to their range are used.
Sunset publishes a series that breaks up climate zones more finely than the USDA zones, identifying 45 distinct zones in the US, incorporating ranges of temperatures in all seasons, precipitation, wind patterns, elevation, and length and structure of the growing season.
Climate change projections
Recent research suggests that USDA plant hardiness zones will shift northward under climate change.
Maps Hardiness zone
European hardiness zones
Ireland and UK
Owing to the moderating effect of the North Atlantic Current on the Irish and British temperate maritime climate, Britain, and Ireland even more so, have milder winters than their northerly position would otherwise afford. This means that the hardiness zones relevant to Britain and Ireland are quite high, from 7 to 10, as shown below.
- 7. In Scotland the Grampians, Highlands and locally in the Southern Uplands, in England the Pennines and in Wales the highest part of Snowdonia.
- 8. Most of England, Wales and Scotland, parts of central Ireland, and Snaefell on the Isle of Man.
- 9. Most of western and southern England and Wales, western Scotland, also a very narrow coastal fringe on the east coast of Scotland and northeast England (within 5 km of the North Sea), London, the West Midlands Urban Area, most of Ireland, and most of the Isle of Man.
- 10. Very low-lying coastal areas of the southwest of Ireland and the Isles of Scilly.
In 2012 the United Kingdom's Royal Horticultural Society introduced new hardiness ratings for plants, from H7, the hardiest (tolerant of temperatures below -20°C) to H1a (needing temperatures above 15°C).
Northern Europe
Scandinavia lies at the same latitude as Alaska or Greenland, but the effect of the warm North Atlantic Current is even more pronounced here than it is in Britain and Ireland. Save for a very small spot near Karasjok, Norway, which is in zone 2, nowhere in the Arctic part of Scandinavia does it get below zone 3. The Faroe Islands, at 62-63°N are in zone 8, as are the outer Lofoten Islands at 68°N. Tromsø, a coastal city in Norway at 70°N, is in zone 7, and even Longyearbyen, the northernmost true city in the world at 78°N, is still in zone 5. All these coastal locations have one thing in common, though, which are cold, damp summers, with temperatures rarely exceeding 20 °C (68 °F), or 15 °C (59 °F) in Longyearbyen. This shows the importance of taking heat zones into account for better understanding of what may or may not grow.
In Sweden and Finland generally, at sea level to 500 metres (1,600 ft), zone 3 is north of the Arctic Circle, including cities like Karesuando, Pajala and Rovaniemi. Kiruna is the major exception here, which being located on a hill above frost traps, is in zone 5. Zone 4 lies between the Arctic Circle and about 64-65°N, with cities such as Oulu and Jokkmokk, zone 5 (south to 61-62°N) contains cities such as Tampere, Umeå and Östersund. Zone 6 covers the south of mainland Finland, Sweden north of 60°N, and the high plateau of Småland further south. Here one will find cities such as Gävle, Örebro, Sundsvall and Helsinki. The Åland Islands, as well as coastal Southern Sweden, and the Stockholm area are in zone 7. The west coast of Sweden (Gothenburg and southwards) enjoys particularly mild winters and lies in zone 7, therefore being friendly to some hardy exotic species (found, for example, in the Gothenburg Botanical Garden), the southeast coast of Sweden has a colder winter due to the absence of the Gulf Stream.
Denmark has zones 9a, 8b, and 8a.
Central Europe
Central Europe is a good example of a transition from an oceanic climate to a continental climate, which can be noticed immediately when looking at the hardiness zones, which tend to decrease mainly eastwards instead of northwards. Also, the plateaux and low mountain ranges in this region have a significant impact on how cold it might get during winter. Generally speaking, the hardiness zones are high considering the latitude of the region, although not as high as in the Shetland Islands where zone 9 extends to over 60°N. In Central Europe, the relevant zones decrease from zone 8 on the Belgian, Dutch and German North Sea coast, with the exception of some of the Frisian Islands (notably Vlieland and Terschelling), the island of Heligoland and some of the islands in the Rhine-Scheldt estuary, which are in zone 9, to zone 5 around Suwa?ki, Podlachia on the far eastern border between Poland and Lithuania. Some isolated, high elevation areas of the Alps and Carpathians may even go down to zone 3 or 4. An extreme example of a cold sink is Funtensee, Bavaria which is at least in zone 3 and maybe even in zone 1 or 2. Another notable example is Waksmund, a small village in the Polish Carpathians, which regularly reaches -35 °C (-31 °F) during winter on calm nights when cold and heavy airmasses from the surrounding Gorce and Tatra Mountains descend down the slopes to this low-lying valley, creating extremes which can be up to 10 °C (18 °F) colder than nearby Nowy Targ or Bia?ka Tatrza?ska, which are both higher up in elevation. Waksmund is in zone 3b while nearby Kraków, only 80 km (50 mi) to the north and 300 m (980 ft) lower is in zone 6a. These examples prove that local topography can have a pronounced effect on temperature and thus on what is possible to grow in a specific region.
Southern Europe
The southern European marker plant for climate as well as cultural indicator is the olive tree, which cannot withstand long periods below zero so its cultivation area matches the cool winter zone. The Mediterranean Sea acts as a temperature regulator, so this area is generally warmer than other parts of the continent; except in mountainous areas where the sea effect lowers, it belongs in zones 8-10; however, southern Balkans (mountainous- Western and Eastern Serbia, continental Croatia and Bulgaria) are colder in winter and are in zones 6-7. The Croatian (Dalmatian) coast, Albania and northern Greece are in zones 8-9, as are central-northern Italy (hills and some spots in Po Valley are however colder) and southern France; Central Iberia is 8-9 (some areas are slightly colder). The Spanish and Portuguese Atlantic coast, most of Andalusia and Murcia, almost all the Valencian Community, a part of Catalonia, Balearic Islands, southwestern Sardinia, most of Sicily, coastal southern Italy and southwestern Greece are in zone 10, the islands of Malta, Lampedusa and the southern zone of Spain (Málaga, Cádiz and Granada, where there is mango and avocado cultivation) belong to zone 11a. Also, a few areas on the southernmost coast of Cyprus are inside zone 11a.
European cities
The table below provides hardiness zone data for some European cities (based on climatological data):
Australian hardiness zones
The USDA hardiness zones are in use in Australia, but in addition the Australian National Botanic Gardens have devised another system more in keeping with Australian conditions. They are numerically about 6 lower than the USDA system. For example, Australian zone 3 is roughly equivalent to USDA zone 9. The higher Australian zone numbers have no US equivalents.
There are problems with classifications of this type: the spread of weather stations is insufficient to give clear zones and too many places with different climates are lumped together. Only 738 Australian stations have records of more than ten years (one station per 98,491 hectares or 243,380 acres), though more populated areas have relatively fewer hectares per station. Local factors such as aspect, altitude, proximity to the sea also complicate the matter. For example, Mount Isa has three climatic stations with more than a ten-year record. One is in zone 4a, one in zone 4b and the other is in zone 5a. Likewise, Sydney residents are split between zones 3a and 4b. Most other cities have similar problems. Different locations in the same city are suitable for different plants, making it hard to draw a meaningful map without publishing a list of weather stations and their zone classification to allow best use of local conditions.
Canadian hardiness zones
Climate variables that reflect the capacity and detriments to plant growth are used to develop an index that is mapped to Canada's Plant Hardiness Zones. This index comes from a formula originally developed by Ouellet and Sherk.
The formula used:
Y = -67.62 + 1.734X? + 0.1868X? + 69.77X? + 1.256X? + 0.006119X? + 22.37X? - 0.01832X?
where: Y = estimated index of suitability X? = monthly mean of the daily minimum temperatures (°C) of the coldest month X? = mean frost free period above 0 °C in days X? = amount of rainfall (R) from June to November, inclusive, in terms of R/(R+a) where a=25.4 if R is in millimeters and a=1 if R is in inches X? = monthly mean of the daily maximum temperatures (°C) of the warmest month X? = winter factor expressed in terms of (0 °C - X?)Rjan where Rjan represents the rainfall in January expressed in mm X? = mean maximum snow depth in terms of S/(S+a) where a=25.4 if S is in millimeters and a=1 if S is in inches X? = maximum wind gust in (km/hr) in 30 years
For practical purposes, Canada has adopted the American hardiness zone classification system. The 1990 version of the USDA Plant Hardiness Zone Map included Canada and Mexico, but they were removed with the 2012 update to focus on the quality of the map for the United States and Puerto Rico.
American Horticultural Society heat zones
In addition to the USDA Hardiness zones there are American Horticultural Society (AHS) heat zones.
The criterion is the average number of days per year when the temperature exceeds 30 °C (86 °F). The AHS Heat Zone Map for the US is available on the American Horticultural Society website.
European cities (AHS heat zones)
South Africa
South Africa has five horticultural or climatic zones.
See also
- Agriculture
- Tropics
- Subtropics
- Gardening
- Hardiness (plants)
- Geographical zone
References
Bibliography
External links
- Hardiness Zone maps for several continents
- Interactive Google Maps USDA Plant Hardiness Zone Map
- Sunset Magazine Garden Climate Zone Map
- Freeze/Frost data from NOAA
- Data on plant hardiness in Ireland
- Plant Hardiness Data (Canada)
- Plant Hardiness Zones of Canada - Interactive Map
Source of the article : Wikipedia